Possible Dirac quantum spin liquid in the kagome quantum antiferromagnet <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>YCu</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mi>OH</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mn>6</mml:mn></mml:msub><mml:msub><mml:mi>Br</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mrow><mml:mo>[</mml:mo><mml:msub><mml:mi>Br</mml:mi><mml:mi>x</mml:mi></mml:msub><mml:msub><mml:mrow><mml:mo>(</mml:mo><…

نویسندگان
چکیده

We studied the magnetic properties of YCu$_3$(OH)$_6$Br$_2$[Br$_{1-x}$(OH)$_{x}$] ($x$ = 0.33), where Cu$^{2+}$ ions form two-dimensional kagome layers. There is no order down to 50 mK while Curie-Weiss temperature on -100 K. At zero field, low-temperature specific heat shows a $T^2$ dependence. Above 2 T, linear dependence term in emerges, and value $\gamma C/T$ increases linearly with field. Furthermore, susceptibility tends constant at $T 0$. Our results suggest that ground state consistent Dirac quantum-spin-liquid dispersing spinon strongly coupled an emergent gauge which has long been theoretically proposed as candidate Heisenberg antiferromagnetic system.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kapellasite: a kagome quantum spin liquid with competing interactions.

Magnetic susceptibility, NMR, muon spin relaxation, and inelastic neutron scattering measurements show that kapellasite, Cu3Zn(OH)6Cl2, a geometrically frustrated spin-1/2 kagome antiferromagnet polymorphic with herbertsmithite, is a gapless spin liquid showing unusual dynamic short-range correlations of noncoplanar cuboc2 type which persist down to 20 mK. The Hamiltonian is determined from a f...

متن کامل

Quantum criticality of the kagome antiferromagnet with Dzyaloshinskii-Moriya interactions

The nearest neighbor spin S = 2 antiferromagnet on the kagome lattice has been the focus of extensive theoretical and experimental study because it is a prime candidate for realizing a ground state without antiferromagnetic order. On the experimental side, much attention has focused on the S = 1/2 compound herbertsmithite ZnCu3(OH)6Cl2. It has J ⇡ 170 K and no observed ordering or structural di...

متن کامل

Algebraic vortex liquid theory of a quantum antiferromagnet on the kagome lattice

There is growing evidence from both experiment and numerical studies that low half-odd integer quantum spins on a kagome lattice with predominant antiferromagnetic near-neighbor interactions do not order magnetically or break lattice symmetries even at temperatures much lower than the exchange interaction strength. Moreover, there appears to be a plethora of low-energy excitations, predominantl...

متن کامل

Spin-liquid phase in a spin-1/2 quantum magnet on the kagome lattice.

We study a model of hard-core bosons with short-range repulsive interactions at half filling on the kagome lattice. Using quantum Monte Carlo numerics, we find that this model shows a continuous superfluid-insulator quantum phase transition, with exponents z=1 and nu approximately 0.67(5). The insulator, I*, exhibits short-ranged density and bond correlations, topological order, and exponential...

متن کامل

Gapless quantum spin liquid ground state in the two-dimensional spin-1/2 triangular antiferromagnet YbMgGaO4

Quantum spin liquid (QSL) is a novel state of matter which refuses the conventional spin freezing even at 0 K. Experimentally searching for the structurally perfect candidates is a big challenge in condensed matter physics. Here we report the successful synthesis of a new spin-1/2 triangular antiferromagnet YbMgGaO4 with symmetry. The compound with an ideal two-dimensional and spatial isotropic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical review

سال: 2022

ISSN: ['2469-9950', '2469-9969', '2469-9977']

DOI: https://doi.org/10.1103/physrevb.105.l121109